If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-8x-16=0
a = 5; b = -8; c = -16;
Δ = b2-4ac
Δ = -82-4·5·(-16)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{6}}{2*5}=\frac{8-8\sqrt{6}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{6}}{2*5}=\frac{8+8\sqrt{6}}{10} $
| 2÷a=(5 2)÷(5 4) | | 12-3p=-3(p-2)+6 | | 1=-7+2w | | -5(-11-16f)=4(12+20f) | | x-10,403=116 | | -10j-2(-8j-6)=-13j+19j+12 | | -6h-18=3(-2h-6) | | 3x^2+5+1=0 | | -16+8(-2w+6)=15-16w+17 | | 9(-2m+20)+12=-2m | | (7×-8y=55 | | -9.2w+2.82=-18.6w | | -4.4-8.9k+13.58=-8.9k+9.18 | | (4y+5)^2/8y^2+6y-5=(4y+5)/(2y-1) | | P^2-6p-18=-2 | | X+2y=3310 | | -12u-12=2(-6u-6) | | X^-7x+4=-6 | | 22r+44=450 | | 4z-16=4(z-4) | | 82=3x+11 | | -5(2q+6)=2(-5q-15) | | 5(7x+2=80 | | 15.78+1.2f=1.2f+15.78 | | 10.99n=80 | | (2x-6)=-48 | | -7.54-2.6m=-2.6m-7.54 | | -13.87+5.1n-19.7n=-13.87-14.6n | | -10.9j+18.7j=7.8j | | -3.6p-12.84=-3.6p+4.44 | | 3j+10-j=2j+10 | | 1.48+14.5q=-14+14.5q+15.48 |